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Theoretical relation is derived describing the mass transfer into the liquid in turbulent flow with 
steady velocity profile, at high Schmidt numbers Sc ~ 103 in the concentration entrance section. 
Graphical dependences describing the effect of parameters of the model on mass transfer coef­
ficients are presented and discussed. It is demonstrated that for the limiting cases the derived 
theoretical solution transforms into familiar relations (asymptotes). 

In theoretical studies concerning the mass transfer mechanism across the interface, 
the hydrodynamics at the interface and in its close vicinity must be known. But the 
exact mathematical description of hydrodynamics in the given region is in majority 
of actual situations not applicable. Thus at description of the phenomena it is neces­
sary to start from simplified models which enable to obtain the mathematical ex­
pression in a solvable form. The application of various simplifying assumptions 
has led to formation of a number of models on mass transfer mechanism such as the 
film theory, penetration theory, theories based on the assumption of eddy diffusivity 
and others. 

From the analysis of the available literature has resulted that none of the published 
models is capable to describe with a sufficient accuracy the mass transfer mechanism 
in the whole real range of Schmidt numbers. In this respect the widest range is covered 
by the model published by Kolar l which has been already verified experimentally 
for the range of Schmidt numbers 3. 10- 3 ~ Sc ~ 3 . 103

• Thus it has appeared 
appropriate to verify its validity also in the remaining region of high Schmidt num­

bers (Sc > 3 . 103
). 

In this considered region the low diffusivity results in a considerable prolongation 
of the entrance section necessary for formation of a steady concentration profile i.e. 
of the situation which can be described by the theoretical model l

. For values Sc ~ 10, 
follows from the proposed model for the dimensionless mass transfer coefficient 
in steady state k! the relation 

(1) 
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For very large values of the Schmidt number it is possible to neglect the left hand side 
term in the parentheses of the relation (1) so that the relation is obtained 

(2) 

which is relation familiar for the mass transfer coefficient according to the film theory, 
where 15+ represents the dimensionless width of the film. Experimental verification 
of relation (2) or (1) is very difficult with respect to a considerable length of the 
entrance section. Experimentally it is usually possible to obtain the mass transfer 
coefficients averaged over a certain length of the operating section. Thus for veri­
fication of the modeP it is necessary to derive the corresponding relation for the 
mass transfer coefficients in the entrance section where the concentration profile 
is not fully developed and the steady state is not reached. 

THEORETICAL 

If mass transfer in the entrance section of length L is studied two situations can be met. 

a) Thickne'ss or the concentration boundary layer is smaller than the thickness 
of the laminar layer (be < b) over the whole length L. This means that mass transfer 
takes place mostly through molecular mechanism and the whole situation should be 
described as mass transfer into laminar flow of semiinfinite layer. This situation 
has been studied by Krammers and Kreyger2 who, for the dimensionless mass 
transfer coefficient averaged over the length L, have derived the relation 

(3) 

By comparison of results calculated according to relation (3) with the experimental 
data3 for Sc = 1160000 and L + = 8 120 a very good agreement in the range of 2% 
has been reached. 

b) Much more frequent and complex is the situation when in the part or nearly 
in the whole studied section with the length L is be ~ b. Then mass transfer takes 
place both due to molecular and turbulent mechanism to a different degree. Let us 
consider the following mechanism. Liquid with developed velocity profile which 
is approximately linear in close vicinity of the wall flows along the solid surface 
from which, from the point x = 0 mass is transferred into the liquid stream, see Fig. l. 
On the interface is kept the component concentration c* given by solubility of the 
component and in the turbulent core the concentration Cb• According to the basic 
assumption of the tested model l there exists a laminar layer where mass transfer 
due only to molecular mechanism takes place in close vicinity of the interface. Across 
the transition region which is in contact with the laminar layer on one side and with 
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turbulent core on the other side mass transfer takes place by unsteady diffusion 
for the time given by the time scale of turbulence in the transition layer 'L For the 
mean value of the mass transfer coefficient in the transition layer k* averaged over 
the time scale of turbulence T, according to the theoretical model l the relation 
is obtained 

k* = 2u*/()rc}" + SC lt2) , (4) 

valid for Sc > 10. On basis of the known k* it is possible, by comparison of mass 
transfer rates, to obtain the relation 

(5) 

for the mean concentration on t~e interface between the laminar and transition 
layer Cx. The known concentration Cx enables simplification of the mathematical 
description of the system in Fig. 1 to the description of the situation in the laminar 
layer in close vicinity of interface. 

The mass transfer rate in the system demonstrated in Fig. 1 can be characterized 
by the dimensionless mass transfer coefficient, which is either local 

D (oc) 
k; = oy x,o, 

(c* - cb) u* 
(6) 

or averaged over the length L 

e = ~f\; dx. 
L 0 

(7) 

When in Eq. (6) x increases beyond all limits, k; becomes the dimensionless mass 
transfer coefficient in steady state k! . Similarly for L --+ 00 also e according to Eq. 
(7) becomes equal to k! . This means that with increasing x or L the mass transfer 
coefficients calculated according to relations (1), (6) and (7) are approaching one 
another. 

As it can be seen from Eqs (6) and (7) for evaluation of mass transfer coefficients 
it is necessary to know the derivation of the concentration profile on the interface 
in dependence on coordinate x. This derivation can be obtained by solution of the 
diffusion equation describing the mass transfer in the laminar layer. 

The balance of the transported component for the volume of liquid in the laminar 
layer originated by penetration of layers of thicknesses f..x and f..y with the width s, 
the differential equation is obtained 
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(8) 

In its derivation it has been assumed that the effect of axial diffusion is negligible 
which was later verified by comparison of solutions of Eq. (8) and of the equation 
including another term D(02cjoX2). As in both cases the principle of solution is ana­
logical, only Eq. (8) is being solved here. 

The boundary conditions according to Fig. 1 are written in the form 

x = 0 y~ 0 c = Cb , 

x> 0 Y= 0 C = c* , 

x> 0 y= f> c= Cx • 

(9a) 

(9b) 

(9c) 

By introduction of new variables it is possible to arrange Eq. (8) into the form suitable 
for solution and to solve it by the method of separation of variables. For the con­
centration profile ill the laminar layer the relation is then obtained 

C - cb = 1 _ y+ jf>+ + 
c* - cb 1 + Jc+ J rc SC-1 /2 

215+ 

+ 2.329375i~1 Aiet /3(y+ jf>+)1 /2 Jl /3 [~Qi(Y+ j 15 +)3/2] exp ( -e; 15 :
3
+SC) . (10) 

By substitution into relations (6) and (7) for (ocjoy)x,o from Eq. (10) the relations 
are obtained for calculation of local dimensionless mass transfer coefficient in the 
form 

(11 ) 

and of the dimensionless mass transfer coefficient averaged over the dimensionless 
length L+ 

e = [(Jc+ ) 1[/2 + f>+ SC1/ 2) SC1/ 2J-l - 1.808~~2f>+2 JIAie~4/ 3 . 

. [exp(-e2~) -1J. 
1 15+3 Sc 

(12) 
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At arrangement of Eqs (11) and (12) in the relation for derivation (3c/ 3 Y)x.o for 
J1 / 3(t) it has been substituted from equation 

(13) 

which is an approximate relation4 for the Bessel function for t -7 O. This substitution 
is justified as the argument equal to zero is directly substituted. Relations (11) and 
(12) can be moreover arranged to another form by substitution for x+ (x+ = x . 

. Re . .jU/2)/d and for L+(L+ = L. Re . .j(J/2)/d). In the discussed relations appear 
as new parameters the Reynolds number and the ratio L/d or x/d. 

The values of Qi are roots of equation 

FIG. 1 

Dissolution of Solid Component in Liquid 
Layer in which the Linear Velocity Profile 
is Fully Developed 

u.w. unsoluble wall, s. w. soluble wall. 
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FIG. 2 

Dimensionless Mass Transfer Coefficient 
in D~pendence on Schmidt Number 

-. - .-.- Kohir(; . . ... film theory; -- - -­
Krammers and Kreyger2; --. relation (12) 
1 Re = 5000; 2 Re = 10000; 3 Re = 
= 20000; 4 Re = 50000; 5 Re = 100000; 

L/d = 15. 
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and the constants Ai can be evaluated according to relation 

Ai = {Q~ [Ji/3(iQi) - ~ J1 / 3 (iQj) J4 /iiQj) + J~/3(iQj)J} -1 i = 1,2, 3, ... , co 

(15) 

With respect to the fact that the calculations cannot be performed with an infinite 
number of constants Aj and Qj it has been necessary to neglect in summations the 

TABLE I 

Values of First Ten ConstantsQj and Aj and Sums SUM for Some Values of Schmidt Number 

Sc = 488 Sc = 930 Sc = 4620 
SUM = 9'90272.10- 4 SUM = 9'90375. 10- 4 SUM = 9·92121 . 10- 4 

Qi Aj Qi Ai Qj Ai 

2·56947 0 '335784 2·74983 0·306935 3'25301 0·259935 
6·91087 0·146625 7·00793 0·142875 7'37440 0·131196 

11 ' 5297 0'0897301 11 ·5909 0·0888105 11·8420 0·0853451 
4 16'2014 0'0642372 16·2456 0·0638931 16'4322 0·0625054 

20'8912 0'0499394 20'9257 0·0497764 21-0731 0·0490988 
25·5893 0'0408214 25·6175 0'0407321 25'7390 0·0403545 
30·2917 0·0345089 30'3156 0·0344547 30'4188 0·0342240 
34·9969 0'0298827 35·0176 0·0298475 35·1072 0·0296965 
39·7037 0·0263480 39'7220 0'0263238 39 '8012 0·0262198 

10 44·4117 0·0235598 44·4281 0'0235424 44'4990 0'0234678 

Sc = 51900 Sc = 58200 Sc = 88700 
SUM = 9'96731 . 10 - 4 SUM = 9'96637 . 10 - 4 SUM = 9·95523 . 10- 4 

Qj Aj OJ Aj Qj Aj 

H0359 0·240264 3·92545 0·240062 3·99847 0·239522 
8·18549 0·117834 8'22199 0·117558 8'34863 0·116767 

12·5794 0'0784979 12'6207 0·0782629 12'7703 0·0775312 
4 17·0636 0·0588681 17·1041 0·0586989 17·2562 0·0581327 

21·6119 0'0470196 21 ·6494 0·0469036 21 ·7943 0·0464934 
26·2037 0·0390811 26·2377 0·0390015 26·3719 0·0387087 
30·8249 0·0333976 30·8557 0·0333420 30·9788 0·0331314 
35·4667 0·0291338 35-4945 0·0290940 35·6072 0·0289400 
40·1229 0'0258211 40'1483 0·0257919 40'2516 0·0256771 

10 44·7898 0·0231760 44·8130 0·0231540 44'9081 0·0230668 
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terms of higher order. In Eqs (10) and (11) no difficulties have been met. The decrease 
of terms in sums is fast and ten constants Aj and (lj usually represent sufficient ac­
curacy. The problems result only from Eq. (12) where, when from a certain index 
the value of the exponential term is neglected remain the terms of the type - Aj (li

4
/

3
• 

By calculation of a larger number of constants Ai and (Ii it has been found out that 
for these terms is the dependence of Ai on (lj in logarithmic coordinates linear and the 
remaining terms can be summed ups. 

TABLE I 

(Continued) 

Sc = 6260 Sc = 9030 Sc = 11 400 Sc = 14800 
SUM = 9'93014.10- 4 SUM = 9'94388.10- 4 SUM = 9'93552.10- 4 SUM = 9'94695.10- 4 

l?j Aj Qj Aj l?i Aj l?j Aj 

3·34974 0 '254818 3-46293 0·249993 3·53211 0·247593 3·60634 0'245431 
7·46603 0'128881 7·58432 0·126226 7·66310 0'124658 7·75357 0'123047 

11'9110 0'0844882 12·0045 0·0833961 12·0699 0·0826817 12'1483 0'0818787 
16·4853 0·0621325 16·5589 0'0616340 16·6116 0·0612913 16·6761 0·0608876 
21·1158 0'0489096 21'1755 0·0486506 21·2188 0·0484681 21 ·2723 0'0482475 
25'7745 0'0402469 25·8245 0·0400977 25·8609 0'0399910 25·9063 0'0398603 
30'4492 0·0341574 30·4920 0·0340644 30·5233 0·0339973 30·5625 0·0339144 
35'1336 0·0296526 35·1710 0·0295910 35·1985 0·0295463 35·2329 0·0294907 

39'8246 0·0261894 39·8578 0·0261466 39·8821 0·0261154 39·9127 0'0260765 

44'5200 0'0234460 44·5498 0·0234151 44·5717 0'0233925 44·5992 0·0233643 

Sc = 136000 Sc = 194000 Sc = 687000 Sc = 1160000 
SUM = 9'93596.10- 4 SUM = 9'90296.10- 4 SUM = 9'69524.10- 4 SUM = 9'59404.10- 4 

(lj Aj (lj Aj OJ Ai OJ Aj 

4·06135 0'239203 4'10585 0·239046 4·21822 0·238840 4'24874 0·238818 

8'46339 0·116252 8·54758 0·115978 8·76960 0 ' 115593 8·83175 0·115549 

12'9145 0'0769929 13-0254 0·0766795 13·3369 0·0761847 13·4282 0·0761232 

17'4113 0'0576669 17·5364 0·0573688 17·9138 0·0568347 18·0309 0'0567592 

21'9488 0·0461239 22·0789 0·0458668 22·5001 0·0453432 22-6390 0·0452587 

26'5202 0·0384259 26'6492 0·0382151 27·0960 0·0377311 27·2525 0·0376420 

31'1184 0'0329170 31·2431 0·0327482 31·7014 0·0323164 31·8716 0·0322263 

35 '7374 0·0287768 35·8564 0·0286427 36·3162 0·0282657 36'4965 0'0281775 

40'3728 0·0255517 40·4853 0·0254451 40·9399 0'0251199 41-1271 0'0250355 

45'0208 0·0229692 45'1270 0·0228840 45·5717 0'0226053 45·7633 0·0225258 
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As results from Eqs (14) and (15) the constants Ai and l2i are functions of the 
Schmidt number and of thicknesses b+ and A +. For the values b+ = 1 and A + = 20 
which have been obtained for the pipe of circular cross section 1 and some of Schmidt 
numbers are the first ten constants A i and l2i and the value of the sum SUM cal­
culated according to relation 

<Xl 

SUM = L A il2;-4/3 (16) 
i = It 

given in Table 1. This sum becomes especially significant for small values of L+ 
and large values of the Schmidt number when, for the above mentioned assumptions 
to be met, it is necessary to take into account larger number of constants than ten. 
For illustration let us consider the following example of calculation: Calculate 
the value of k+ for Sc = 930 in the pipe of circular cross section for the length 
of averaging L+ = 10. Solution is performed according to relation 

k + = _ _ 1·_80_8_66_2 
(17·724538 + SC1

/
2

) SC I
/

2 

0-5 1'0 

FIG. 3 

Concentration Profiles in Laminar Layer 
in D::pendence on Dimensionless Coordinate 
x + (Sc = 930) 

1 x+ = 15·6; 2 x+ = 31'2; 3 x+ = 46 '8; 
4 x += 78; 5 x+ = 156; 6 x+ = 1561. 

FIG. 4 

Concentration Profiles in Laminar Layer 
in D ependence on Dimensionless Coordinate 
x+ eSc = 88700) 

1 x+ = 156' 2 x+ = 781 ' 3 x+ = 1561' 
4x+ = 4683;.5 x + = 15612; 6x+ = 46837: 

Collection Czechoslovak Chern. Commun . [Vol . 46] [19811 



Mass Transfer into the Liquid in Turbulent Flow 1453 

where the values of constants Ai and Qi and the values of SUM are taken for Sc = 930 
from Table I. 

DISCUSSION 

Equations have been solved numerically on the computer which enabled to obtain 
a number of useful dependences. The most frequently determined are the dependences 
of k ! and k+ on Sc. These dependences are plotted in Fig. 2. It can be seen from 
this figure that Eq. (12) (solid line) becomes, for large values of Schmidt number 
and constant ratio Lj d equal to Eq. ( 3) (dashed line) derived for the semiinfinite 
layer. Moreover it is possible to see from Fig. 2 that with changing thickness of the 
laminar layer, due to the change in the Re number, changes also the ¥alue of the 
Schmidt number, from which it is possible to consider the thickness of the laminar 
layer as semiinfinite space in comparison with the thickness of the concentration 
boundary layer. For example for Re = 5000 is the value Sc ~ 20000, for Re = 
= 10000, Sc ~ 100000 etc. With decreasing value of the Schmidt number decreases 
also the dependence of k+ on Re number, so that finally in the region Sc < 103 

the independence of k+ on Re is obtained. The relation (12) denoted by the solid 
line takes the form of Eq. (1) denoted by the dashed and dotted curves, from which 

FIG. 5 

Concentration Profiles in Laminar Layer 
in Dependence on Dimensionless Coordinate 
x + (Sc = 202 000) 
1 x+ = 312; 3 x+ = 1561; 4 x + = 4683; 
4 x+ 15612; 5 x+ = 31224; 6 x+ = 93675. 
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FIG. 6 

Dimensionless Mass Transfer Coefficient 
Averaged Over the Length of Entrance Sec­
tion in D ependence on Reynolds Number 

LId = 15; ----- Eq. (1); --Eq. (12); 
1 Sc = 930; 2 Sc = 14800; 3 Sc = 88700; 
4 Sc = 202000; 5 Sc = 1160000. 
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is this mentioned dependence obvious. In Fig. 2 is also plotted the dependence of the 
mass transfer coefficient on Schmidt number according to the film theory as the 
dotted line. From this figure is obvious that the difference between the theory by Ko­
lar l (Eq. (1)) and the film theory (Eq. (2)) is for Sc = 106 already negligible. The 
formation of the concentration boundary layer can be observed in Figs 3 to 5 where 
the profiles of concentrations in the laminar layer are plotted in dependence on the 
dimensionless coordinate x+ . From Fig. 3 is obvious that for the value of Schmidt 
number Sc = 930 the diffusion coefficient is sufficiently large so that the steady 
concentration profile develops nearly immediately in comparison with Figs 4 and 5 
for Sc = 88700 and Sc = 202000 where for reaching of the steady state is neces­
sary by orders of magnitude longer distance, which of course affects the mass transfer 
coefficient averaged over the length of this entrance section. 

The entrance section lengths for which the mass transfer coefficients k: and e 
reach their steady values can be calculated on basis of the formulated model. In the 
calculation has been assumed that the entrance section length is such for which 
the change in k: and k+ caused by its continuing prolongation is smaller than 1%, 
3% or 5%. The cOl:responding entrance region lengths x+ for k; and L+ for e 
are then given for various values of the Schmidt number in Table II. It can be seen 
from this Table that the entrance section lengths are significantly increasing with the 
increasing value of the Schmidt number. So e.g. for the maximum change in the mass 
transfer coefficients by 1% and for Sc = 6260, the steady value of k; is reached 
for x+ = 2699 which for Re = 10000 represents the ratio x/d = 4·3 and e for 
L + = 70459, which represents the ratio L/d = 112·l. For Sc = 687000 is x+ = 

= 183264 which for Re = 10000 represents the ratio x/d = 291·4 and L+ = 4447404 

FIG. 7 

Dimensionless Mass Transfer Coefficients 
k; and k+ in Dependence on Dimensionless 
Coordinate x + and L + 

.... . . . Krammers and Kreyger2; - - --­
Eq. (11) k; = f(x+); --- Eq. (12) e = 
= f(L +); 1 Sc = 930; 2 Sc = 14800; 3 Sc = 
= 88700; 4 Sc = 202000; 5 Sc = 1160000. 

Collection Czechoslovak Chern. Commun. [Vol. 46] [1981] 



Mass Transfer into the Liquid in Turbulent Flow 1455 

and thus Lid = 7072. From this example results that experimental measurements 
of e would perhaps not be possible for Sc = 687000 with regard to the magnitude 
of ratios xld and Lid. 

Better than from Fig. 2 is the dependence of e on Re obvious from Fig. 6. It is 
possible to see from this figure that with increasing value of the Schmidt number 
it is necessary "to increase significantly the value of Re number so that the effect 
of the entrance section would vanish and k+ given by Eq. (12), which is in the figure 
denoted by solid line, would become identical with k~ given by Eq. (1) which is 
in the same figure denoted by dashed line. The necessary increase in Re number 
is due to the fact that with increasing value of Sc decreases the thickness of the con­
centration boundary layer and this decrease must be counterbalanced by decrease 
in the thickness of the laminar layer and thus by increase in Re. 

The effect of the length of the entrance section on values k; and k+ according 
to Eqs (11) and (12) is discussed in Fig. 7, where k; as f(x+) is denoted by dashed 
line and e as f(L+) is denoted by solid line. In this figure the effect of Re number 
is included in the dimensionless variables x+ and L+. From this figure is obvious 
that with increasing value of x+' or L+ the values k; and k + are approaching each 

TABLE II 

Dimensionless Lengths for which the Mass Transfer Coefficient Reaches the Steady Value in De-
pendence on Schmidt Number 

1% 3% 5% 

Sc 
x + L+ x+ L+ x+ L+ 

480 387 14985 308 4995 270 2997 

930 633 21190 498 7063 435 4238 

4620 2126 56814 1646 18938 1423 11363 

6260 2699 70459 2087 23486 1802 14092 

9030 3622 92 468 2795 30823 2410 18494 

11 400 4383 110660 3379 36887 2912 22132 

14800 5444 136102 4194 45367 3613 27220 

51900 16194 395490 12 452 131 830 10712 79098 

58200 17 954 438070 13804 146023 11 875 87614 

88700 26355 641520 20260 213 840 17426 128304 

136000 39 153 951 676 30095 317225 25883 190335 

194000 54636 1327110 41994 442370 36115 265422 

687000 183264 4447404 140847 1482467 121124 889481 

1160000 305004 7401066 234408 2467021 201582 1 480212 
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other and as results from relations (6) and (7) for x + and L + ~ 00 both values are 
becoming identical and equal to k! . The character of the dependence is again af­
fected by the value of Sc number. It is also worth stating that for small values of x+ 

and L+ the thickness of the concentration boundary layer is sufficiently small so that 
the thickness of the laminar layer in comparison with it could be considered to be 
a semiinfinite space and the mass transfer coefficients could be expressed on basis 
of models by Krammers and Kreyger2. These comparisons are also made in Fig. 7, 
where the values of the mass transfer coefficient averaged over the length of the 
entrance section calculated on basis of the models by Krammers and Kreyger 2 are 
denoted by dotted line. 

LIST OF SYMBOLS 

proportionality constant in Eq. (8) (s - 1) 
constant defined by Eq. (75) 
concentration (mol m - 3) 

c* concentration of component on interface (mol m - 3) 

cb concentration of component in the bulk of liquid phase (mol m - 3) 

C x concentration defined by Eq. (5) (mol m - 3) 

d diameter of pipe (m) 
D diffusivity of component (m2 S-1) 

1= 0'078 Re- O
.
25 friction factor 

Jv(x) Bessels function of v order 

k 
k + = k/u* 

k oo 
k ;' = !c oo/u* 
lex 
k~ = kx /II* 
k" 
L 
L+ = Lu*/ v 

Re = duly 

SUM 

Sc = v/D 
u 

u" = 1/ ..)1/2 
X 

x+ = x u*/v 

y 
y+=yu*/v 

,,+ = "u*/v 

mass transfer coefficient averaged over length L (m s - I) 

fully developed mass transfer coefficient (m s -1) 

local mass transfer coefficient (m s -1) 

mass transfer coefficient in transition region (m s -1) 

length of entrance section (m) 

Reynolds number 
width (m) 
sum defined byEq. (16) 

Schmidt number 
component of average velocity in direction of flow (m s -1) 

friction velocity (m s - 1) 

coordinate (m) 

coordinate (m) 

coordinate (m) 
thickness of laminar layer (m) 

"c thickness of concentration boundary layer (m) 
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}, + = A. u* / v 
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